Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
le hoang minh khoi

Chung minh rang: 22n. (22n+1-1) -1 chia hết cho 9 với mọi số tự nhiên n 

Mr Lazy
1 tháng 7 2015 lúc 11:07

\(2^{2n}\left(2^{2n+1}-1\right)-1=2.16^n-4^n-1\)

#Chứng minh quy nạp: \(2.16^n-4^n-1\) chia hết cho 9 (1)
+Với n = 1; 2; 3 thì (1) đúng.
+Giả sử (1) đúng với n = k , tức là \(2.16^k-4^k-1\)\(\left(k\ge1\right)\) chia hết cho 9.
Ta chứng minh (1) đúng với n = k+1, tức là chứng minh số sau chia hết cho 9:
\(2.16^{k+1}-4^{k+1}-1=16.2.16^k-4.4^k-1\)

\(=16\left(2.16^k-4^k-1\right)+12.4^k+15\)
\(\text{Mà }2.16^k-4^k-1\text{ chia hết cho 9 nên ta cần chứng minh }12.4^k+15\text{ chia hết cho 9, hay }4.4^k+5\text{ chia hết cho 3}\)

#Quy nạp phụ: \(4.4^n+5\)chia hết cho 3 (2)
+n = 1; 2; 3 thì (2) đúng
+Giả sử (2) đúng với n = k, tức là 4.4k + 5 chia hết cho 3.
Ta chứng minh (2) đúng với n = k+1, tức là chứng minh số sau chia hết cho 3:
4.4k+1 + 5 = 4.4.4 + 5 = 4(4.4k + 5) - 15 chia hết cho 3 vì 4.4k + 5 chia hết cho 3 và 15 chia hết cho 3.
Vậy 4.4n + 5 chia hết cho 3 với mọi n.

=> 12.4k + 15 chia hết cho 9
Mà 2.16k - 4k - 1 chia hết cho 9
=> 16.(2.16k - 4k -1) + 12.4k + 15 chia hết cho 9

Vậy \(2.16^n-4^n-1\) chia hết cho 9 với mọi số tự nhiên n (đpcm)


Các câu hỏi tương tự
trần tuấn phát
Xem chi tiết
Ngô Minh Sơn
Xem chi tiết
Anh Mai
Xem chi tiết
Vân Trần
Xem chi tiết
Dung Trần
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Đặng Tuấn Anh
Xem chi tiết
Nguyễn Trung Tín
Xem chi tiết
Đỗ Thị Việt hoa
Xem chi tiết