chứng minh rằng với mọi số tự nhiên n thì
(n+2016^2015)x(n+2017^2014) chia hết cho 2
Chứng minh rằng:
( 102017 + 102016 + 102015 ) chia hết cho 555
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
Cho m và n là các STN khác 0 bất kỳ. CMR ( 2015m + 22017 + n2 ) không chia hết cho 10
Chứng minh rằng :
20162017+20152017+20092017 chia hết cho 10
Chứng tỏ rằng tổng sau không chia hết cho 10:
A=2015mũ n+2 mũ 2015+m mũ 2 (m,n ko thuộc N,n ko thuộc 0)
CHO A=4+2^2+2^3+2^4+.....+2^2015+2^2016
Chứng minh rằng A chia hết cho 2^2017
Chứng minh rằng các tổng và hiệu sau chia hết cho 10
a)192017 + 312017
b)72015 + 72017
1. Tìm các số nguyên x, y để :
x,(y-5) = -9
2. Chứng minh rằng với mọi số nguyên n thì :
a) A = (n+6).(n+7) luôn luôn chia hết cho 2
b) n2+n+2017 không chia hết cho 2
3. Cho a và b là hai số nguyên không chia hết cho 3 nhưng có cùng số dư khi chia cho 3. Chứng minh rằng hai số đó trừ 1 lại chia hết cho 3.
4. Cho A = 20+21+22+...+22017. Hỏi A có là số chính phương không? Vì sao ; A+1 có là số chính phương không?