Cho số phức z thỏa mãn z - 1 2 - i + i = 5 . Biết rằng tập hợp biểu diễn số phức w = (1-i)z + 2i có dạng ( x + 2 ) 2 + y 2 = k Tìm k.
A. k = 92
B. k = 92
C. k = 50
D. k = 96
Tìm các số thực x, y thỏa mãn:
a) 2x + 1 + (1 – 2y)i = 2 – x + (3y – 2)i
b) 4x + 3 + (3y – 2)i = y +1 + (x – 3)i
c) x + 2y + (2x – y)i = 2x + y + (x + 2y)i
Số nào sau đây là số thực?
A. 2 + i 2 1 - i 2 + 1 + i 2 2 - i 2
B. (2 + 3i)(3 - i) + (2 - 3i)(3 + i)
C. 1 + i 2 - i 2 - i + 1 + i 2 - i 2 + i
D. 2 + i 3 2 - 2 - i 3 2
Lập phương trình bậc hai có nghiệm là:
a) 1 + i 2 và 1 − i 2 ;
b) 3 + 2i và 3 − 2i;
c) − 3 + i 2 và − 3 − i 2 .
Cho i là đơn vị ảo. Nghiệm của phương trình 3z+i-1=(i+2)/(i-2) là
A.
B.
C.
D.
Cho số phức z thỏa mãn z + i = 1 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 + 4 i z + 2 + i là một đường tròn tâm I, điểm I có tọa độ là
A. (6; -2)
B. (6; 2)
C. (2; 1)
D. (-2; -1)
Trong các khẳng định sau đây, khẳng định nào sai?
A:
ii là số phức thỏa mãn i^2=-1i2=−1.
B:
Số phức 2-9i2−9i có phần thực là 2 và phần ảo là -9−9.
C:
Số phức 2-i2−i có phần thực là 2 và phần ảo là 11.
D:
Phương trình x^2+1 = 0x2+1=0 có hai nghiệm trên tập số phức \mathbb{C}C là ii và -i−i.
Cho số phức z thỏa mãn ( 2 + i ) z + 2 ( 1 + 2 i ) 1 + i . Môđun của số phức w = z + i + 1 là
A. 3
B. 4
C. 5
D. 6
Tìm phần thực a của số phức z thỏa mãn (1 + i) 2( 2 - i) z = 8 + i + (1 + 2i) z.
A. a = 2.
B. a = -3.
C. a = -2.
D. a = 3.
Trong các số phức: ( 1 + i ) 2 , ( 1 + i ) 8 , ( 1 + i ) 3 , ( 1 + i ) 5 số phức nào là số thực?
A.
B.
C.
D.