ae giúp mình câu này với ạ
1 k cho bạn nào nhanh nhất
ae giúp mình câu này với ạ
1 k cho bạn nào nhanh nhất
Chứng minh rằng : \(\frac{1}{4028}< \left(\frac{1}{2}.\frac{3}{4}.....\frac{2011}{2012}.\frac{2013}{2014}\right)^2< \frac{1}{2015}\)
Chung minh rang \(\frac{1}{4028}< \hept{ }\frac{1}{2}.....\frac{2013}{2014}< \frac{1}{2015}\)
Chứng minh rằng
\(\frac{1}{4028}< \left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2013}{2014}\right)^2< \frac{1}{2015}\)
\(\frac{1}{4028}< \left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot.......\cdot\frac{2011}{2012}\cdot\frac{2013}{2014}\right)^2< \frac{1}{2015}\)
Chứng minh rằng 1+2/2+3/2^2+4/2^3+....+2014/2^2013+2015/2^2014 <4
P = (1-2/2x3)x(1-2/3x4)x(1-2/4x5) . . . x(1-2/99x100)
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100))
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100
1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100