Ta có
1+3+32+33+...+32011
= (1+3+32+33)+....+(32008+32009+32010+32011)
=40+40+...+40
=10(4+4+...+4)\(⋮\)10 (đpcm)
đặt A= 1+3+32 +........+32011
=> 3A=3+32 +33+.......+32011+32012
=> 3A-A=32012-1
=>A=(32012-1)/2
Đặt \(A=1+3+3^2+3^3+.......+3^{2011}\)
\(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+........+\left(3^{2008}+3^{2009}+3^{2010}+3^{2011}\right)\)
\(\Rightarrow A=10+3^4.\left(1+3+3^2+3^3\right)+.......+3^{2008}.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=10+3^4.10+.........+3^{2008}.10\)
\(\Rightarrow A=10\left(1+3^4+......+3^{2008}\right)⋮10\)( đpcm )
Vậy .....