Chứng minh rằng
a) A =\(\frac{2^3+1}{2^3-1}.\frac{3^3+1}{3^3-1}.\frac{4^3+1}{4^3-1}.....\frac{9^3+1}{9^3-1}< \frac{3}{2}\)
Chứng minh rằng F= 1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+5+6+...+2017)<2016/2017
cho n thuộc số tự nhiên chứng minh rằng 1/a+1^4 + 3/4+3^4 + ........+2n-1/4+(2n-1)^4 = n^2/4n^2 +1
Chứng minh rằng với mọi n≥2 ta có:
1/2^3+1/3^3+...+1/n^3<1/4
Chứng minh rằng: 1/22+1/32+1/42+....+1/19902<3/4
Cho a,b,c >0 và a2+b2+c2=3
Chứng minh rằng \(\dfrac{1}{a^3+a+2}\) + \(\dfrac{1}{b^3+b+2}\) + \(\dfrac{1}{c^3+c+2}\) ≥ \(\dfrac{3}{4}\)
cho a , b, c khác o và a+b+ckhác o thoả mãn điều kiện 1/a +1/b+1/c=1?a+b+c chứng minh rằng trong 3 số a,b,c có 2 số đối nhau từ đó suy ra 1/a^2009+1/b^2009+1/c^2009=1/a^2009+b^2009+c^2009
Chứng minh rằng: A>B khi:
A=(3+1)(3^2+1)(3^4+1)(3^6+1)(3^8+1)(3^16+1) B=3^32 -1
chứng minh rằng :
a) 1+3+3^2+3^3+...+3^11 chia hết cho 40
b)B= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)