ko bt sory nha
Ta có:
\(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\)
\(=\frac{1}{80}\)
Mà \(\frac{1}{80}< \frac{1}{9}\)
\(\Rightarrow\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}< \frac{1}{9}\left(đpcm\right)\)
Học tốt
CMR:\(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+....+\frac{1}{77.80}< \)\(\frac{1}{9}\)
Ta gọi A= \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)
Khi đó ta có:
\(3A=\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\)
A= \([(\frac{1}{20}-\frac{1}{23})+(\frac{1}{23}-\frac{1}{26})+(\frac{1}{26}-\frac{1}{29})+....+(\frac{1}{77}-\frac{1}{80}]\)
A=\(\frac{1}{20}-\frac{1}{80}\)
A=\(\frac{3}{80}\)
\(\Rightarrow\)A=\(\frac{1}{80}\)
So sánh: \(\frac{1}{80}< \frac{1}{9}\)(ĐPCM)
Câu kết cậu làm giống bạn Nguyễn Hải Nam nha, cách bạn ấy đơn giản hơn