`Answer:`
Đặt \(d=ƯCLN\left(2n+3;4n+7\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy `\frac{2n+3}{4n+7}` tối giản ` ∀n`