Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Huỳnh Vi Anh

Chứng minh P là phân số tối giản: P = (2n3 +3n2 -n-1) / (2n3 +3n2 +3n +1)

GV
24 tháng 2 2015 lúc 21:19

\(P=\frac{\left(2n^3+n^2\right)+\left(2n^2+n\right)-\left(2n+1\right)}{\left(2n^3+n^2\right)+\left(2n^2+n\right)+\left(2n+1\right)}\)

\(P=\frac{n^2\left(2n+1\right)+n\left(2n+1\right)-\left(2n+1\right)}{n^2\left(2n+1\right)+n\left(2n+1\right)+\left(2n+1\right)}\)

\(P=\frac{n^2\left(2n+1\right)+n\left(2n+1\right)-\left(2n+1\right)}{n^2\left(2n+1\right)+n\left(2n+1\right)+\left(2n+1\right)}\)

P không là tối giản vì cả tử và mẫu đều chia hết cho (2n +1)

Vũ Xuân Phương
13 tháng 8 2017 lúc 8:48

ban thieu DKXD:N=/\(\frac{-1}{2}\)

No Nam
10 tháng 8 2019 lúc 9:59

Phân số P chắc chắn không tối giản vì tử và mẫu chia hết cho 2n - 1, còn phân số sau khi rút gọn mới là tối giản.

\(P=\frac{n^2+n-1}{n^2+n+1}\)

Gọi d là ước chung lớn nhất của tử và mẫu

\(\hept{\begin{cases}n^2+n+1⋮d\\n^2+n-1⋮d\end{cases}}\)

suy ra \(n^2+n+1-\left(n^2+n-1\right)⋮d\)hay \(2⋮d\)

Lại có \(n^2+n+1=n\left(n+1\right)+1\)là số lẻ nên d là số lẻ.

Hai điều trên suy ra d = 1.

Do đó P là phân số tối giản.


Các câu hỏi tương tự
Nguyễn Văn A
Xem chi tiết
Nguyễn Minh Nhật
Xem chi tiết
tran khanh my
Xem chi tiết
Nguyen Thi Ai Duyen
Xem chi tiết
Mai Thị Ánh Phượng
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Baechu Nhi
Xem chi tiết
Xem chi tiết