\(P=\frac{\left(2n^3+n^2\right)+\left(2n^2+n\right)-\left(2n+1\right)}{\left(2n^3+n^2\right)+\left(2n^2+n\right)+\left(2n+1\right)}\)
\(P=\frac{n^2\left(2n+1\right)+n\left(2n+1\right)-\left(2n+1\right)}{n^2\left(2n+1\right)+n\left(2n+1\right)+\left(2n+1\right)}\)
\(P=\frac{n^2\left(2n+1\right)+n\left(2n+1\right)-\left(2n+1\right)}{n^2\left(2n+1\right)+n\left(2n+1\right)+\left(2n+1\right)}\)
P không là tối giản vì cả tử và mẫu đều chia hết cho (2n +1)
Phân số P chắc chắn không tối giản vì tử và mẫu chia hết cho 2n - 1, còn phân số sau khi rút gọn mới là tối giản.
\(P=\frac{n^2+n-1}{n^2+n+1}\)
Gọi d là ước chung lớn nhất của tử và mẫu
\(\hept{\begin{cases}n^2+n+1⋮d\\n^2+n-1⋮d\end{cases}}\)
suy ra \(n^2+n+1-\left(n^2+n-1\right)⋮d\)hay \(2⋮d\)
Lại có \(n^2+n+1=n\left(n+1\right)+1\)là số lẻ nên d là số lẻ.
Hai điều trên suy ra d = 1.
Do đó P là phân số tối giản.