chứng minh n3+3n2+2n chia hết cho 6 (mình ko nhớ n3 hay n3)
chứng minh rằng với số nguyên n . Ta có A = ( n3 + 11.n ) chia hết cho 3
chứng minh rằng với số nguyên n . Ta có A = ( n3 + 11.n ) chia hết cho 3
#Toán lớp 6Cho A = n3+3n2+2n. Chứng minh rằng A chia hết cho 3 với mọi số nguyên n
chứng minh
a) n3 – n + 4 không chia hết cho 3 ;
b) n2 + 11n + 39 không chia hết cho 49 ;
c) n2 + 3n + 5 không chia hết cho 121.
Chứng minh rằng: A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n
Chứng minh rằng: A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n.
Nguồn bài viết: https://timgiasuhanoi.com/dang-bai-tap-chung-minh-quan-he-chia-het-so-hoc-6/
I.CHỨNG MINH :
1) n.(2n+7).(7n+7) chia hết cho 6 (n thuộc N)
2) n3-13n chia hết cho 6 (n thuộc Z)
3) m.n.(m2-n2) chia hết cho 3 (m,n thuộc Z)
LÀM NHANH GIÚP tớ nhá ^_^ Tớ tick
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2