Chứng minh n(n+1) (2n+1) chia hết cho 6 với mọi n thuộc N
chứng minh rằng A=n(n+1)(2n+1) chia hết cho 6 với mọi n thuộc N
chứng minh rằng n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
Chứng minh n . ( 2n + 7 ) . ( 7n + 1 ) chia hết cho 6 với mọi n thuộc N .
Cho n thuộc N.Chứng minh rằng:
a) (n+10)(n+15) chia hết cho 2
b) n(n+1)(2n+1) chia hết cho 6
c) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
?
Bài 5: Chứng minh rằng: Tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9. (a^3 đọc
là a lập phương)
Bài 6: Chứng minh rằng:
a) n(n + 1) (2n + 1) chia hết cho 6
b) n^5 - 5n^3 + 4n chia hết cho 120 Với mọi số n thuộc N
Bài 7: Chứng minh rằng: n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 Với mọi số n Z
Bài 8: Chứng minh rằng: Với mọi số tự nhiên n lẻ thì :
a) n^2 + 4n + 3 chia hết cho 8
b) n^3 + 3n^2 - n - 3 chia hết cho 48
c) n^12 - n^8 - n^4 + 1chia hết cho 512
Bài 9: Chứng minh rằng:
a) Với mọi số nguyên tố p>3 thì p^2 – 1 chia hết cho 24
b) Với mọi số nguyên tố p, q >3 thì p^2 – q^2 chia hết cho 24
Bài 10: Chứng minh rằng:
n^3 + 11n chia hết cho 6 với mọi số n thuộc Z.
HD: Tách 11n = 12n – n
Chứng minh rằng : n.(2n+1).(7n+1) chia hết cho 6. ( mọi n thuộc N )
Chứng minh
a/ ƯCLN (2n+3,4n+1)=1
b/ n(n+5) chia hết cho 2 với mọi n thuộc N
c/ (n+3).(n+7).(n+8) chia hêt cho 6 vơi mọi điều kiện n thuộc N