chung minh neu a/b=c/d thi \(\frac{12a^2+7ab}{20a^2-13b^2}=\frac{12c^2+7cd}{20c^2-13d^2}\)
(gia thiet ca ti so tren deu co nghia)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{3a^2+2b^2}{3c^2+2d^2}\)
b)\(\frac{4a^4+5b^4}{4c^4+5d^4}=\frac{a^2b^2}{c^2d^2}\)
c)\(\left(\frac{a-b}{c-d}\right)^{2005}=\frac{2a^{2005}-b^{2005}}{2c^{2005}-d^{2005}}\)
d)\(\frac{2a^{2005}+5b^{2005}}{2c^{2005}+5d^{2005}}=\frac{\left(a+b\right)^{2005}}{\left(c+d\right)^{2005}}\)
e)\(\frac{\left(20a^{2006}+11b^{2006}\right)^{2007}}{\left(20a^{2007}-11b^{2007}\right)^{2006}}=\frac{\left(20c^{2006}+11d^{2006}\right)^{2007}}{\left(20c^{2007}-11d^{2007}\right)^{2006}}\)
f)\(\frac{\left(20a^{2007}-11c^{2007}\right)^{2006}}{\left(20a^{2006}+11c^{2006}\right)^{2007}}=\frac{\left(20b^{2007}-11d^{2007}\right)^{2006}}{\left(20b^{2006}+11d^{2006}\right)^{2007}}\)
2a+13b/3a-7b=2c+13d/3c-7d chứng minh rằng a/b=c/d
Cho 2a+13b/3a-7b=2c+13d/3c-7d. Chứng minh răngd a/b=c/d
cho a/b=b/c=c/a và a+b+c=2019 tim x biet 2016.(|x| +1 ) +13b +12c =a^2
Cho a/b=b/c=c/a và a+b+c=2019. Tìm x biết: 216(GTTĐ của x +1)+13b+12c=a^2
cho a/b=b/c=c/a và a+b+c=2019. Tìm x biết 216.(|x|+1)+13b+12c=a^2
Giúp Giúp !!!!!
Chứng minh rằng : nếu \(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{20a+21b}{20c+21d}=\frac{20a-21b}{20c-21d}\)
Cho tỉ lệ thức:
\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
Chứng minh rằng: \(\frac{a+b}{b}=\frac{c+d}{d}\)