Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn tuấn anh

chứng minh n3+3n2+2n chia hết cho 6 (mình ko nhớ n3 hay n3)

Phạm Trần Minh Ngọc
1 tháng 8 2015 lúc 10:21

Có: \(n^3+3n^2+2n=n^3+n^2+2n^2+2n\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)=\left(2n+n^2\right)\left(n+1\right)\)

\(=n\left(n+2\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Có \(n;n+1;n+2\)là 3 số nguyên liên tiếp

\(\Rightarrow\)trong đó có một số chia hết cho 3; có ít nhất một số chia hết cho 2

\(\Rightarrow\)\(n\left(n+1\right)\left(n+2\right)\)chia hết cho \(2\times3\)

\(\Rightarrow\)\(n\left(n+1\right)\left(n+2\right)\)chia hết cho 6

\(\Rightarrow\)\(n^3+3n^2+2n\)chia hết cho 6

Trần Hùng Minh
1 tháng 1 2016 lúc 17:30

Bạn Phạm Trần Minh Ngọc làm thiếu rồi, mình phải có thêm dữ kiện 2 và 3 là 2 số nguyên tố cùng nhau nữa mới đủ ~~

Nhóc_Siêu Phàm
21 tháng 1 2018 lúc 21:33

Có: 

n^ 3 + 3n^ 2 + 2n

= n ^3 + n^ 2 + 2n ^2 + 2n

= n ^2( n + 1 )+ 2n (n + 1)

= (2n + n ^2 )(n + 1 )

= n( n + 2)( n + 1)

= n( n + 1)(n + 2)Có n;n + 1;n + 2là 3 số nguyên liên tiếp

⇒ trong đó có một số chia hết cho 3; có ít nhất một số chia hết cho 2

⇒n (n + 1)( n + 2) chia hết cho 2 × 3

⇒n (n + 1)( n + 2) chia hết cho 6

⇒n^ 3 + 3n^ 2 + 2n chia hết cho 6


Các câu hỏi tương tự
Trần Thùy Linh
Xem chi tiết
Trần Thùy Linh
Xem chi tiết
Nguyễn Trọng Trường Sơn
Xem chi tiết
Trần Phương Uyên
Xem chi tiết
Yêu tinh nghịch ngợm
Xem chi tiết
Trần Phương Uyên
Xem chi tiết
ShinNosuke
Xem chi tiết
Phạm Trung Dũng
Xem chi tiết
Veoo
Xem chi tiết