Chứng minh bằng phương pháp quy nạp
Với n=1:có (1+1)=2 chia hết cho 21
Giả sử,với n=k thì (k+1).(k+2)....2k chia hết cho 2k
cần chứng minh : (k+1+1).(k+1+2).... .2(k+1) chia hết cho 2k+1
Ta có : (k+1+1).(k+1+2)..... .2(k+1)=(k+2).(k+3).....2k.2.(k+1)=2.(k+1) =2.(k+1).(k+2)...2k chia hết cho 2.2k=2k+1
Vậy (n+1).(n+2).....2n chia hết cho 2n,thương là q
=> q=\(\frac{\left(n+1\right).\left(n+2\right).....2n}{2^n}=\frac{1.2....n.\left(n+1\right).\left(n+2\right)}{1.2....n.2^n}=\frac{\left(2^n\right)!}{n!.2^n}\)