ta xét vd:
1/a.b+1/b.c
=1/a-1/b+1/b-1/c
=1/a-1/c
vậy nên 1/a.b=1/a-1/b
bài hơi khó hiểu có thể sai đấy
ta xét vd:
1/a.b+1/b.c
=1/a-1/b+1/b-1/c
=1/a-1/c
vậy nên 1/a.b=1/a-1/b
bài hơi khó hiểu có thể sai đấy
a) A = 1+\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..........+\frac{1}{100^2}\)
Chứng minh rằng A<2
b) B =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+................+\frac{1}{2012^2}\)
Chứng minh rằng \(\frac{1}{2}-\frac{1}{2013}< B< 1\)
Cho biểu thức A =\(\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\) và B =\(\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\) với x > 0; x ≠ 1
1) Tính giá trị của A khi x = 16
2) Chứng minh rằng B = \(\frac{\sqrt{x}+2}{\sqrt{x}}\)
3) Cho P = A.B. So sánh P với 3.
Bài 1:
a) Cho \(b\in n\):\(b>1\). Chứng minh rằng: \(\frac{1}{b}-\frac{1}{b+1}< \frac{1}{b^2}-\frac{1}{b-1}-\frac{1}{b}\)(1)
b) Áp dụng công thức (1) chứng minh \(\frac{2}{5}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}+\frac{1}{9^2}< \frac{8}{9}\)
Bài 2. Chứng tỏ
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}< \frac{1}{4}\)
cho:
a) A= 2+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+\frac{1}{65}+\frac{1}{66}+\frac{1}{67}\)
chứng minh rằng A>5
b) B= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{89^2}+\frac{1}{90^2}\)
chứng minh rằng \(\frac{40}{91}\)<B<1
Cho các số a,b,c thỏa mãn a.b.c = 1
Tính \(A=\frac{1}{a.b+a+1}+\frac{1}{b.c+b+1}+\frac{1}{c.a+c+1}\)
Cho các số a, b, c thỏa mã a.b.c = 1
Tính A = \(\frac{1}{a.b+a+1}+\frac{1}{b.c+b+1}+\frac{1}{c.a+c+1}\)
Cho các số a, b, c thỏa mãn a.b.c=1
Tính \(A=\frac{1}{a.b+a+1}+\frac{1}{b.c+b+1}+\frac{1}{c.a+c+1}\)