Hoàng Phong

chứng minh \(\frac{1}{3\left(\sqrt{2}+\sqrt{1}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}< \frac{1}{2}\)

Bùi Lê Xuyến Chi
18 tháng 7 2017 lúc 12:43

 Đặt biểu thức trên là A.

Ta có: \(\left(\sqrt{n+1}+\sqrt{n}\right)\)).(\(\sqrt{n+1}-\sqrt{n}\))=1

=>\(\frac{1}{\left(\sqrt{n+1}+\sqrt{n}\right)}=\left(\sqrt{n+1}-\sqrt{n}\right)\)

Từ trên: \(\frac{1}{\left(2n+1\right).\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}\)

Lại có :\(\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right)+n}< \frac{1}{2}.\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right).n}=\frac{1}{2}.\left(\frac{1}{n}-\frac{1}{n+1}\right)\)(Bất đẳng thức Cô-si)

Thế số vào, ta được :

A<\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{n+1}}\right)\)=\(\frac{1}{2}.\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
Tín Đinh
Xem chi tiết
Châu Đặng Huỳnh Bảo
Xem chi tiết
Ngoc Anhh
Xem chi tiết
Nguyễn Hữu Anh Tuấn
Xem chi tiết
Bùi Lê Xuyến Chi
Xem chi tiết
Hoàng Bá Nhật
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
wang yuan
Xem chi tiết
mad vocaloid
Xem chi tiết