đặt \(a=\sqrt[3]{6+\sqrt{\frac{847}{27}}};b=\sqrt[3]{6-\sqrt{\frac{847}{27}}}\). dễ thấy a> 0; b > 0
=> \(a^3+b^3=6+\sqrt{\frac{847}{27}}+6-\sqrt{\frac{847}{27}}=12\); \(a.b=\sqrt[3]{6+\sqrt{\frac{847}{27}}}.\sqrt[3]{6-\sqrt{\frac{847}{27}}}=\sqrt[3]{36-\frac{847}{27}}=\frac{5}{3}\)
Có: (a+ b)3 = a3 + b3 + 3ab (a+ b)
=> (a + b)3 = 12 + 3. \(\frac{5}{3}\).(a + b) = 12+ 5.(a + b)
=> (a + b)3 - 5.(a +b) - 12 = 0
<=> (a + b)3 - 9.(a + b) + 4.(a + b) - 12 = 0
<=> (a + b). [(a + b)2 - 9] + 4.(a + b - 3) = 0 <=> (a + b).(a + b + 3).(a + b- 3) + 4.(a + b - 3) = 0
<=> (a+ b - 3).[(a + b)(a+ b+ 3) + 4] = 0
<=> a+ b = 3 hoặc (a + b)(a+ b+ 3) + 4 = 0
tuy nhiên : Vì a > 0; b > 0 nên (a + b)(a+ b+ 3) + 4 > 0
vậy a + b = 3 => điều phải chứng minh