Có: Vế trái : (a - c)(b + d) - (a - d)(b + c)
= ab + ad - bc - cd - ab - ac + bd + cd
= ad - bc - ac + bd
= ad - ac + bd + bc
= a(d - c) + b(d - c)
= (a + b)(d - c) (= vế phải)
Vậy đpcm
BĐVT có,
=ab+ad-bc-cd-ab-ac+bd+cd
=ad-ac-bc+bd
=a(d-c)+b(d-c)
=(a+b)(d-c)=vế phải
suy ra đpcm
tik nha
\(\left(a-c\right)\left(b+d\right)-\left(a-d\right)\left(b+c\right)=ab+ad-cb-cd-\left(ab+ac-bd-cd\right)\)
\(=ab+ad-cb-cd-ab-ac+bd+cd=ad-cb-ac+bd=\left(ad-ac\right)+\left(bd-bc\right)\)
\(=a\left(d-c\right)+b\left(d-c\right)=\left(a+b\right)\left(d-c\right)\)
Ta có: (a - c)(b + d) - (a - d)(b + c) = ab - bc + ad - cd - ab + bd - ac + cd
= ( ab - ab) + (cd - cd) + ad + bd - ac - bc
= ad + bd - ac - bc
= d(a + b) - c(a + b)
= (a + b)(d - c) ( đpcm )
Tick cho mik nha bn