Chứng minh đẳng thức
a) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)
b) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)
c) \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\)
d) \(a\left(b-c\right)-a\left(b+d\right)=-a\left(c+d\right)\)
e) \(\left(a+b\right)\left(c+d\right)-\left(a+d\right)\left(b+c\right)=\left(a-c\right)\left(d-b\right)\)
f) \(\left(a-c\right)\left(b+d\right)-\left(a-d\right)\left(b+c\right)=\left(a+b\right)\left(d-c\right)\)
a. VT:(x-y)-(x-z)
= x-y-x+z
= z-y
VP:(z+x)-(y+x)
=z+x-y-x
=z-y
=> VT=VP => đpcm.
b. VT:(x-y+z)-(y+z-x)-(x-y)
= x-y+z-y-z+x-x+y
= x-y
VP:(z-y)-(z-x)
= z-y-z+x
= x-y
=> VT=VP => đpcm.
c. VT: a(b+c)-b(a-c)
=ab+ac-ab+bc
= ac+bc
VP: (a+b)c
= ac+bc
=> VT=VP => đpcm.
d. VT: a(b-c)-a(b+d)
= ab-ac-ab-ad
= -ac-ad
VP: -a(c+d)
= -ac-ad
=> VT=VP => đpcm
tương tự...