Chứng minh các phân thức sau bằng nhau 2 ( x + 1 ) y - x y 2 = - 2 ( x + 1 ) 3 x ( x + 1 ) 2 y
Chứng minh các phân thức sau bằng nhau 2 ( x + 1 ) y - x y 2 = - 2 ( x + 1 ) 3 x ( x + 1 ) 2 y
1.viết phân thức sau dưới dạng những phân thức có cùng mẫu thức
a) x^2 và x/x+1
b)x/2y và y/x
c)2x+y/x^3-y^3 và x+y/x
d)x+1/x^5.y^4 và 1-x/x^4.y^5
2.viết các phân thức sau dưới dạng những phân thức có cùng tử thức
a)1/x và x-2/x+3
b)x/y và y/x
c)x^2-y^2/2x^2 -xy và x+y/x
d)x^3.x^2/x-y và x^2.y^3/x+y
chứng minh các đẳng thức sau (x-y)^3 +4y(2x^2+y^2)=(x+y)^3+2y(x^2+y^2)
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
Chứng minh các đẳng thức sau: 2 ( x - y ) 3 ( y - x ) = - 2 3 ( v ớ i x ≠ y )
x^3+y^3-xy(x+y)=(x+y)(x-y)^2
Chứng minh 2 đẳng thức này bằng nhau. Gợi ý:biến đổi 2 vế
Giúp Mk nhe Mk cần gấp lắm
giúp mình vs ạ...5* luôn ạ
bài 1: tìm cặp số (x,y) thỏa mãn đẳng thức:
x^2( x+3) + y^2(x+5) -(x+y)(x^2-xy+y^2) =0
bài 2: hai số x và y thỏa mãn các điều kiện x+y=-1 và xy=-12. tính giá trị của các biểu thức sau:
a)A=x^2+2xy+y^2 b) B=x^2+y^2 c)C=x^3+3x^2y+3xy^2+y^3 d) D=x^3+y^3
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
c) \(x^4+y^4\ge\dfrac{\left(x+y\right)^4}{8}\)
e) \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)
f) \(x^3+y^3+z^3\ge3xyz\)