1) Ta có: a + b + c = 0 <=> \(a+b=-c\)
=> \(\left(a+b\right)^3=-c^3\)
=> \(a^3+3ab\left(a+b\right)+b^3\) = \(-c^3\)
=> \(a^3+b^3+c^3=-3ab\left(a+b\right)\)
=> \(a^3+b^3+c^3=-3ab.\left(-c\right)\) ( Vì \(a+b=-c\))
=> \(a^3+b^3+c^3=3abc\) => đpcm
2) Vì a,b,c là độ dài 3 cạnh của tam giác
=> a,b,c > 0 và a < b+c ; b < a+ c ; c < a+ b
Ta có: \(\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}\) = \(\dfrac{2a}{a+b+c}\) ( b + c > 0; a >0)
\(\dfrac{b}{a+c}< \dfrac{b+b}{a+c+b}\) = \(\dfrac{2b}{a+b+c}\) ( a + c > 0; b > 0)
\(\dfrac{c}{a+b}< \dfrac{c+c}{a+b+c}\) = \(\dfrac{2c}{a+b+c}\) ( a + b >0; c > 0)
=> \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\) < \(\dfrac{2a+2b+2c}{a+b+c}\) = \(\dfrac{2\left(a+b+c\right)}{a+b+c}\) = 2
=> đpcm