vì a>0;b>0;c>0\(\Rightarrow\sqrt{a};\sqrt{b};\sqrt{c}\)luôn được xác định
\(\left(\sqrt{a}-\sqrt{b}\right)^2>=0\Rightarrow a-2\sqrt{ab}+b>=0\Rightarrow a+b>=2\sqrt{ab}\)
\(\left(\sqrt{b}-\sqrt{c}\right)^2>=0\Rightarrow b-2\sqrt{bc}+c>=0\Rightarrow b+c>=2\sqrt{bc}\)
\(\left(\sqrt{c}-\sqrt{a}\right)^2>=0\Rightarrow c-2\sqrt{ca}+a>=0\Rightarrow c+a>+2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)>=2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)(đpcm)
dấu = xảy ra khi a=b=c
Áp dụng ĐBT Cauchy - schwarz cho 2 số không âm, ta được:
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{\left(abc\right)^2}=8abc\left(đpcm\right)\)