\(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)
\(b^3+b^3+a^3\ge3b^2a\)
\(\Rightarrow3\left(a^3+b^3\right)\ge3\left(a^2b+b^2a\right)\Leftrightarrow\left(a^3+b^3\right)\ge\left(a^2b+b^2a\right)\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)
\(b^3+b^3+a^3\ge3b^2a\)
\(\Rightarrow3\left(a^3+b^3\right)\ge3\left(a^2b+b^2a\right)\Leftrightarrow\left(a^3+b^3\right)\ge\left(a^2b+b^2a\right)\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
Chứng minh bất đẳng thức sau: Với a, b, c > 0
\(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\)
Chứng minh bất đẳng thức:
\(2\left(a^3+b^3+c^3\right)\ge a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\) Với a, b, c > 0
Chứng minh bất đẳng thức
\(1,\frac{a}{b}+\frac{b}{a}\ge2\)
\(2,a^2+b^2+c^2\ge ab+bc+ca\)
\(3,\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(4,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{ab}\left(a,b>0\right)\)
\(5, 3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
Chứng minh bất đẳng thức sau:
C = \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\left(a,b,c>0\right)\)
Chứng minh các bất đẳng thức sau:
a,\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(b+d\right)\)
b, \(ab+bc+ca\le0\)khi a+b+c=0
Chứng minh bất đẳng thức
\(\frac{^{a^2+b^2+c^2}}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)
chứng minh bất đẳng thức \(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
Chứng minh các bất đẳng thức:
a. \(a^2+b^2+1\ge ab+a+b\)
b. \(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge a+b+c.\left(a,b,c>0\right)\)
CHỨNG MINH THEO BẤT ĐẲNG THỨC CÔ-SI GIÙM MIK VỚI!!!!