Cho 3 số thực a, b, c thỏa mãn a + b + c ≤ 1. Chứng minh bất đẳng thức: 1/(a^2 + 2bc) + 1/(b^2 + 2ca) + 1/(c^2 + 2ab) ≥ 9
Chứng minh các đẳng thức sau: a + b b 2 a 2 b 4 a 2 + 2 a b + b 2 = a v ớ i a + b > 0 v à b ≠ 0
Vì a>0; b>0 nên a + b \geq 4ab1+ab4ab1+ab
\Leftrightarrow (a + b)(1 + ab)\geq 4ab
\Leftrightarrow a + b + a^2b+ab^2\geq 4ab
\Leftrightarrow a + b + a^b + ab^2 - 4ab\geq 0
\Leftrightarrow (a^2b - 2ab + b) + (ab^2 - 2ab +a) \geq 0
\Leftrightarrow b(a^2 -2a + 1) + a(b^2 - 2B + 1)\geq 0
\Leftrightarrow b(a-1)^2 + a(b-1)^2\geq 0
\Rightarrow Bất đẳng thức đúng\Rightarrow đpcm.
Chứng minh các đẳng thức sau:
a ) 1 − a a 1 − a + a 1 − a 1 − a 2 = 1 v ớ i a ≥ 0 v à a ≠ 1 b ) a + b b 2 a 2 b 4 a 2 + 2 a b + b 2 = | a | v ó i a + b > 0 v à b ≠ 0
chứng minh bất đẳng thức:
\(\left(ab+2bc\right)\left(2ab+bc\right)\le\frac{9}{4}\left(ab+bc\right)^2\)
Chứng minh đẳng thức
1 a - a + 1 a - 1 : a + 1 a - 2 a + 1 = a - 1 a với a > 0, a ≠ 1
chứng minh bất đẳng thức: \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)trong đó a>0; b>0
Cho a,b,c,d thuộc (0,1). Chứng minh rằng ít nhất một trong các bất đẳng thức sau sai:
2a(1-b)>1 ; 3b(1-c)>2 ; 8c(1-d)>1 ; 32d(1-a)>3
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab
Cho a,b,c thuộc khoảng 0 đến 1.
Chứng minh bất đẳng thức :
a - b^2 - c^3 -ab - bc - ca =< 1