\(a^2+b^2+c^2\ge ab+bc+ca\)\(\left(1\right)\)
\(\Rightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)\(\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)( luôn đúng với mọi a , b , c )
Vậy Phương trình \(\left(1\right)\)luôn đúng , hay :
\(a^2+b^2+c^2\ge ab+bc+ca\)\(\left(đpcm\right)\)