Làm thông thường thoy; khai triển ra xog chuyển vế
\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)
\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)
\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)
\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))
Vậy bđt đã đc chứng minh
cảm ơn nhiều nha. chúng ta kết bạn được không?
theo bđt bu-nhi-a cốp-xki thì
(a^3+b^3)^2=(axa^2+bxb^2)^2<=(a^2+b^2)(a^4+b^4)
còn bạn chưa biết thì
<=>a^6+b^6+a^2xb^2(a^2+b^2)>=a^6+b^6+2a^3xb^3
,<=>a^2xb^4+b^2xa^4>=2a^3xb^3
<=>(axb^2-a^2xb)^2>=0(luôn đúng)