Ta có : \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow a^2+b^2-2ab\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow2\left(a^2+b^2\right)\ge2ab+a^2+b^2=\left(a+b\right)^2\left(1\right)\)
Chia cả 2 vế của \(\left(1\right)\)cho 4 , ta được :
\(\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{4}=\left(\frac{a+b}{2}\right)^2\)
\(\Rightarrowđpcm\)