Ta có:
\(\frac{12}{\sqrt{13}}+\frac{13}{\sqrt{12}}=\frac{12\sqrt{13}}{13}+\frac{13\sqrt{12}}{12}=\frac{13\sqrt{13}-\sqrt{13}}{13}+\frac{12\sqrt{12}+\sqrt{12}}{12}\)\(=\sqrt{12}+\sqrt{13}+\frac{1}{\sqrt{12}}-\frac{1}{\sqrt{13}}>\sqrt{12}+\sqrt{13}\)
Ta có:
\(\frac{12}{\sqrt{13}}+\frac{13}{\sqrt{12}}=\frac{12\sqrt{13}}{13}+\frac{13\sqrt{12}}{12}=\frac{13\sqrt{13}-\sqrt{13}}{13}+\frac{12\sqrt{12}+\sqrt{12}}{12}\)\(=\sqrt{12}+\sqrt{13}+\frac{1}{\sqrt{12}}-\frac{1}{\sqrt{13}}>\sqrt{12}+\sqrt{13}\)
\(\frac{1}{\sqrt{16}-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-\sqrt{9}}\)
chứng minh đẳng thức
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}=1\)
1) Chứng minh đẳng thức \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)
2) Chứng minh \(\sqrt{\sqrt{3}-\sqrt{3-\sqrt{13-4\sqrt{3}}}}=1\)
Chứng minh các đẳng thức sau:
a)\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=2\sqrt{5}\)
b)\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=4\sqrt{2}\)
c)\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}=0\)
Chứng minh đẳng thức:
\(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(4\sqrt{\frac{1}{2}}+12\right)=-14\sqrt{2}\)
Giả sử \(\frac{1}{2}< q< \frac{13+5\sqrt{13}}{26}\). Tìm giá trị nhỏ nhất của k sao cho bất đẳng thức
\(\frac{a}{\sqrt{a+qb}}+\frac{b}{\sqrt{b+qc}}+\frac{c}{\sqrt{c+qa}}\le k\sqrt{a+b+c}\)đúng với mọi a,b,c ≥ 0
a,Tính giá trị của biểu thức:
N=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
Trục căn thức ở mẫu và rút gọn:
a) \(\frac{20}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
b) \(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2.\sqrt{3+2\sqrt{5}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
Tính giá trị của biểu thức : \(\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}+\frac{\sqrt{13}-\sqrt{11}}{\sqrt{13}+\sqrt{11}}\).