Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Black Organization

Chứng minh \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)không phải là số tự nhiên

Thanh Tùng DZ
1 tháng 5 2017 lúc 22:24

Ta có :

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)

\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99\)\(\left(1\right)\)

gọi B là biểu thức trong ngoặc

Lại có :

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

\(\Rightarrow A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(1-\frac{1}{100}\right)>98\)

\(\Rightarrow A>98\)\(\left(2\right)\)

từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(98< A< 99\)

vậy A không phải là số tự nhiên

Lê Thị Khánh Linh
4 tháng 5 2017 lúc 8:58

phần bạn đánh dấu (1) thì A<99 vì A= 99 trừ đi một số mà


Các câu hỏi tương tự
Nguyễn Ngọc Anh
Xem chi tiết
vy tuong tran
Xem chi tiết
Nguyễn Vân Anh
Xem chi tiết
hung vu
Xem chi tiết
Vũ Hương Giang
Xem chi tiết
Hoàng Quỳnh Phương
Xem chi tiết
Vân Anh Nguyễn
Xem chi tiết
Nguyễn Thái Hà
Xem chi tiết
nguyễn văn tâm
Xem chi tiết