Chứng minh rằng: \(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}...+\frac{1}{2005^3}+\frac{1}{2006^3}>\frac{1}{15}\)
Chứng minh rằng :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}_{ }\)
cmr:
\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2005^3}+\frac{1}{2006^3}<\frac{1}{4}\)
giúp mk vs nhak
C=\(\frac{\frac{2006}{2}}{\frac{2006}{1}}\) +\(\frac{2006}{\frac{3}{\frac{2005}{2}}}\) +\(\frac{2006}{\frac{4}{\frac{2004}{3}}}\) +...+\(\frac{2006}{\frac{2007}{\frac{1}{2006}}}\)
cho B =\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)chứng minh rằng B < \(\frac{1}{2}\)
1,Tính
a,\(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}\)
b,\(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}\)
2,Tìm x
a,\(\frac{1}{2}+\frac{2}{3}x=\frac{1}{4}\)
b,\(\frac{3}{5}+\frac{2}{5}\div x=3\frac{1}{2}\)
c,\(\frac{x+4}{2004}+\frac{x+3}{2005}=\frac{x+2}{2006}+\frac{x+1}{2007}\)
Giúp mình với nhé mai mình phải nộp rồi
CMR:
\(\frac{1}{2^3}+\frac{1}{3^3}+.....+\frac{1}{2005^3}+\frac{1}{2006^3}<\frac{1}{15}\)
Tính:
S = \(\frac{2}{2005+1}\)+ \(\frac{2^2}{2005^2+1}\)+ \(\frac{2^3}{2005^{2^2}+1}\)+ \(\frac{2^4}{2005^{2^3}+1}\)+ ...+ \(\frac{2^{n+1}}{2005^{2^n}+1}\)+ ...+ \(\frac{2^{2006}}{2005^{2^{2005}}+1}\)
Chứng minh rằng tổng \(P=\frac{1}{3^2}-\frac{1}{3^4}+...+\frac{1}{3^{2006}}-\frac{1}{3^{2008}}\) nhỏ hơn 0, 1