chứng minh bất đẳng thức: \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\)
chứng minh rằng: \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ac\right)\)
Chứng minh bất đẳng thức
\(^{a^8+b^8+c^8\ge a^2b^2c^2\left(ab+ac+bc\right)}\)
cho a^8+b^8+c^8-2a^4b^4-2b^4c^4-2c^4a^4=0
cm a,b,c là ba cạnh của tam giác vuông
8. Biết rằng phương trình P(x) = x3 +3x 2 −1 có ba nghiệm phân biệt a < b < c. Chứng minh rằng c = a2 +2a− 2,b = c2 +2c−2,a = b2 +2b−2.
bài 3
Chứng minh các đẳng thức sau:
a) (a^2 + b^2)^2 – 4a^2b^2 = (a + b)^2(a – b)^2
b) (a^2 + b^2)(x^2 + y^2) = (ax – by)^2 + (bx + ay)^2
c) a^3 – b^3 + ab(a – b) = (a – b)(a + b)^2
d)(a – b)^3 + (b – c)^3 + (c – a)^3 = 3(a – b)(b – c)(c – a)
Cho K= ab+ 4ac - 4bc
Lớp 8:
cho K=ab+4ac - 4bc với a,b,c là các số không âm thỏa mãn a+b+2c=1
a) Chứng minh K ≥ - 1/2
b) Tìm giá trị lớn nhất của K
Cho các số \(a,b,c,d\) nguyên dương đôi một khác nhau và thỏa mãn: \(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\). Chứng minh \(A=abcd\) là số chính phương.
Cho a, b, c, d là các số thực dương. Chứng minh :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)