Bài 11: Chia đa thức cho đơn thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn thị hồng hạnh

chứng minh a^5-a chia hết cho 30

Thu Thủy
24 tháng 3 2021 lúc 19:04

Ta có :

\(a^5-a\)

\(=a\left(a^4+1\right)\)

\(=a\left[\left(a^2\right)^2+1^2\right]\)

\(=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\) chia hết cho 2 và 3

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-2^2+5\right)\)

\(=a\left(a+1\right)\left(a-1\right)\left(a-2\right)\left(a+2\right)+5\left(n-1\right)\left(n+1\right)\) chia hết cho 5

Mà (2, 3, 5) = 1 \(\Rightarrow a^5-a\) chia hết cho 2, 3 và 5

\(\Rightarrow a^5-a\) chia hết cho 30

\(\Rightarrow\left(đpcm\right)\)

Nguyễn Lê Phước Thịnh
24 tháng 3 2021 lúc 21:32

Cách khác:

Ta có: \(a^5-a\)

\(=a\left(a^4-1\right)\)

\(=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)\cdot a\cdot\left(a+1\right)\cdot\left(a^2+1\right)\)

Vì a-1 và a là hai số tự nhiên liên tiếp nên \(\left(a-1\right)\cdot a⋮2\)

\(\Leftrightarrow\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮2\)

mà \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮3\)(Do a-1;a;a+1 là ba số tự nhiên liên tiếp)

nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮6\)

hay \(a^5-a⋮6\)

mà \(a^5-a⋮5\)(Theo định lí Fermat nhỏ, ta có: Nếu \(a^p-a\) có p là số nguyên tố thì \(a^p-a⋮p\), 5 là số nguyên tố)

nên \(a^5-a⋮30\)(đpcm)


Các câu hỏi tương tự
nguyễn thị hồng hạnh
Xem chi tiết
Mỹ Phúc
Xem chi tiết
Lai Guan Lin
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tiểu Thư Kiêu Kì
Xem chi tiết
Huy Hoàng
Xem chi tiết
Linh Khánh
Xem chi tiết
Na LI Mi
Xem chi tiết
Tiểu Thư Kiêu Kì
Xem chi tiết