\(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)-3a^2b-3ab^2\)
\(=\left(a^3+b^3\right)+\left(3a^2b-3a^2b\right)+\left(3ab^2-3ab^2\right)\)
\(=a^3+b^3\) (đpcm)
\(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)-3a^2b-3ab^2\)
\(=\left(a^3+b^3\right)+\left(3a^2b-3a^2b\right)+\left(3ab^2-3ab^2\right)\)
\(=a^3+b^3\) (đpcm)
Cho \(P=\left(a^2-ab+1\right)^3+\left(b^2+3ab-1\right)^3-\left(a+b\right)^2\) chứng minh rằng P chia hết cho 6 với mọi số nguyên a , b.
Thầy cô và các bạn giải nhanh giúp em ạ, em đang cần gấp
Cho a,b,c >0 Chứng minh rằng:
\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\ge\frac{3}{2}.\left(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right)\)
Đề đúng không sai.Ai làm được cho 3 Tick 3 nick khác nhau.
CMR: \(\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-\left(a+b\right)\left(b+c\right)-\left(b+c\right)\left(c+a\right)-\left(a+b\right)\left(c+a\right)=a^2+b^2+c^2-ab-bc-ca\)
Bài này mk cần một cách làm sử dụng hằng đẳng thức hoặc một cách làm thông minh chứ không phải là phân tích hết ra từng cái vd (a+b)^2=a^2+2ab+b^2 r cộng lại. Có cho phép sử dụng phân tích nhưng không phải là kiểu phân tích từ đầu tức là phân tích từng cái như mình đã nói ở trên
AI GIẢI ĐƯỢC MK SẼ TÍCH CHO 3 TÍCH. CẢM ƠN RẤT NHIỀU
Cho \(f\left(x\right)=ax^2+bx+c\) (a ,b,c là các số thực )
a) Biết 10a+2b-5c=0 . Chứng minh\(f\left(-1\right).f\left(-4\right)\ge0\)
b) Biết 13a + b + 2c=0 . Chứng minh \(f\left(-2\right).f\left(3\right)\le0\)
1) Tìm GTNN và GTLN của \(A=\frac{x^2+2x+3}{x^2+2}\)
2) Cho a-b=1
Tính \(M=a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b+1\right)\)
3) Phân tích thành nhân tử (tích):
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
4) Cho \(a+b+c=1\) và \(a^2+b^2+c^2=1\)
a) Nếu \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Chứng minh: \(xy+yz+zx=0\)
b) Nếu \(a^3+b^3+c^3=1\)
Tính a,b,c
Chứng minh rằng:\(\left(a^3+b^3\right)^2-\left(2a^2b+2b^2a\right)^2=a^6-b^6\)
cho tỷ lệ thức \(\dfrac{a}{b}\)= \(\dfrac{b}{c}\)=\(\dfrac{c}{d}\). Chứng minh \(\dfrac{\left(a+b+c\right)}{\left(b+c+e\right)}^3\)=\(\dfrac{a}{d}\)
chứng minh rằng các biểu thức sau không phụ thuộc vào x:
a. \(A=\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\)
b. \(B=\left(x^2-2\right)\left(x^2+x-1\right)-x\left(x^3+x^2-3x-2\right)\)
c. \(C=x\left(x^3+x^2-3x-2\right)-\left(x^2-2\right)\left(x^2+x-1\right)\)
Bài 1 :
Cho 3 tỉ số bằng nhau \(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\) . Tìm giá trị của mỗi tỉ số đó
Bài 2 :
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với \(a;b;c;d\ne0\). Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
Bài 3 :
Tính tổng \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\). Chứng minh rằng \(A⋮43\)
Bài 4 :
Tìm GTNN của biểu thức : \(A=x\left(x+2\right)+2\left(x-\frac{3}{2}\right)\)
Bài 5 :
Cho \(A=1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+\left(\frac{3}{4}\right)^4-\left(\frac{3}{4}\right)^5+...-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)
Chứng minh A không phải là số nguyên