a: Vì 3 là số nguyên tố nên theo ĐỊnh lí nhỏ Fermat, ta được:
\(a^3-a⋮3\)
b: Vì 7 là số nguyên tố nên theo định lí nhỏ Fermat,ta được:
\(a^7-a⋮7\)
a: Vì 3 là số nguyên tố nên theo ĐỊnh lí nhỏ Fermat, ta được:
\(a^3-a⋮3\)
b: Vì 7 là số nguyên tố nên theo định lí nhỏ Fermat,ta được:
\(a^7-a⋮7\)
+Chứng minh:
\(n^5-n\text{ }⋮\text{ }30\text{ }v\text{ới }n\in N\)
\(n^4-10n^2+9\text{ }⋮\text{ }384\text{ }v\text{ới }n\text{ }l\text{ẻ }\left(n\in Z\right)\)
\(10^n+18n-28\text{ }⋮\text{ }27\text{ }v\text{ới }n\in N\)
a)\(\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3\)
b)\(\left(x+y\right)^5-x^5-y^5\)
c)\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
d)\(3abc+a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+c^2\left(c-a-b\right)-c\left(b-c\right)\left(a-c\right)\)
e) 2bc(b+2c)+2ac(c-2a)-2ab(a+2b)-7abc
f)3bc(3b-c)-3ac(3c-a)-3ab(3a+b)+28abc
a)\(\left(\dfrac{5}{7}x^2y\right)^3:\left(\dfrac{1}{7}xy\right)^3\)
b) \(\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
c) \(5\left(x-2y\right)^3:\left(5x-10y\right)\)
d) \(\left(x^3+8y^3\right):\left(x+2y\right)\)
Bài 1: Thực hiện phép tính:
a) \(32x^5\left(3y-7\right)^5:[-4x\left(7-3y\right)^4]\)
b) \(\dfrac{12x^3\left(3x-5\right)^2}{4x\left(3x-5\right)^2}-\dfrac{2x\left(x+7\right)^4}{\left(x+7\right)^3}\)
Tính
a) \(\frac{3}{4}x^5y^7\) : \(\left[\frac{1}{2}x^2\left(y-1\right)^2\right]\)
b) -x2 (y - 1)3 (z + 2)2 : [ \(\frac{1}{2}\)x2 (y - 1)2 ]
1. Thực hiện:
a)\(\left(3x^2y^3-5x^2y^2+6x^4y^7-9x^5y^4\right):x^2y^2\)
b) \(\left(6a^3-3a^2\right):a^2+\left(12a^2+9a\right):3a\)
Tìm kết quả của:
E = \(\left[\left(a+b+c\right)^3+\left(a-b+c\right)^3+\left(-a+b+c\right)^3-\left(a+b+c\right)^3\right]:24abc\)
Làm tính chia :
a) \(\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
b) \(5\left(x-2y\right)^3:\left(5x-10y\right)\)
c) \(\left(x^3+8y^3\right):\left(x+2y\right)\)
Tính:
1). \(0,5a^mb^nc^2:\left(\dfrac{-2}{3}a^2bc\right)\)
2). \(\dfrac{2}{7}\left(x-2y\right)^{2m+1}:\left[\dfrac{-5}{14}\left(2y-x\right)^{2m-1}\right]\)