\(\frac{x\sqrt{x}+13\sqrt{x}-6}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}\frac{\sqrt{x}-3}{\sqrt{x+3}}\)
a) rút gọn
b) tìm x thuộc x để a thuộc z
1) Chứng minh đẳng thức \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)
2) Chứng minh \(\sqrt{\sqrt{3}-\sqrt{3-\sqrt{13-4\sqrt{3}}}}=1\)
Chứng minh rằng biểu thức sau có giá trị không phụ thuộc vào x
\(A=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
Chứng minh đẳng thức sau:
\(\frac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}}-\sqrt[3]{a^2}}+\sqrt[3]{a}}=-\sqrt[3]{a-1}\)
Chứng minh bất đẳng thức sau:
\(\left(\sqrt[3]{\sqrt{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}}\right).\sqrt[3]{\sqrt{5-2}}-2,1< 0\)
chứng minh
a) \(\sqrt{14+2\sqrt{13}}-\sqrt{14-2\sqrt{13}}=2\)
b) \(\sqrt{7+4\sqrt{3}}-\sqrt{5-2\sqrt{6}}-\sqrt{2}=2\)
Chứng minh A< 1. Biết
\(A=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{399\sqrt{400}+400\sqrt{399}}\)
1. tìm x thuộc z để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)nguyên
2.\(B=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{\sqrt{x}+1}{x-1}\)
a. điều kiện
b. rút gọn
c. chứng minh 3B<1
3.\(C=\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x+5}}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
a. điều kiện
b. rút gọn
c.tìm x thuộc z để C thuộc z
4. tìm giá trị nhỏ nhất của biểu thức
\(A=x+\sqrt{x}+1\)
Chứng minh các đẳng thức sau:
a)\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=2\sqrt{5}\)
b)\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=4\sqrt{2}\)
c)\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}=0\)