Ta có A = 75 ( 4^ 2013+4^2012+...+4^2+4+1)+25
= 75( 4^ 2013+4^2012+...+4^2+4) +75 +25
= 75[4(4^2012+...+4^2+4+1)] +100
= 300(4^2012+...+4^2+4+1) +100
= 100 [3(4^2012+...+4^2+4+1) + 1 ] chia hết cho 100 (Đ.P.C.M)
=
Ta có A = 75 ( 4^ 2013+4^2012+...+4^2+4+1)+25
= 75( 4^ 2013+4^2012+...+4^2+4) +75 +25
= 75[4(4^2012+...+4^2+4+1)] +100
= 300(4^2012+...+4^2+4+1) +100
= 100 [3(4^2012+...+4^2+4+1) + 1 ] chia hết cho 100 (Đ.P.C.M)
=
Chứng minh rằng
A= 75.( 41999+41998+...+42+4+1)+25 là số chia hết cho 100
Chứng minh A=75(4^2015+4^2014+.....+4^2+4+1)+25 chia hết cho 100
1) chứng minh: A= 75( 42014 + 42013+ ... + 4 +1 )+ 25 chia hết cho 100
2) cho a,b,c>0. chứng tỏ rằng: \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
3) Tìm x biết : |x+1/101| + |x+2/101| + |x+3/101|+....+ |x+100/101|=1001x
giúp minh cau nay vs nhé
A= 75. (4^2004 + 4^2003 +...+4^2 +4+1)+25 là số chia hết cho 100
Chứng tỏ rằng: A=75×(42004+42003+...+42+4+1)+25
là số chia hết cho 100
Chứng tỏ rằng:
\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\)là số chia hết cho 100
Chứng tỏ rằng:
A = 75. (42004 + 42003 + . . . . . + 42 + 4 + 1) + 25 là số chia hết cho 100
Chứng tỏ rằng:
A=75.(\(4^{2004}+4^{2003}+...+4^2+4+1\))+25 là số chia hết cho 100
Chứng tỏ rằng A= 75( 4^2023+ 4^2022+4^2021+...+ 4^2+ 4+ 1)+ 25 chia hết cho 100