\(8^{10}-8^9-8^8⋮11\)
\(8^{10}-8^9-8^8\)
\(=8^8.\left(8^2-8-1\right)\)
\(=8^8.\left(64-8-1\right)\)
\(=8^8.55\)
Vì \(55⋮11\Rightarrow8^8.55⋮11\)
\(\Rightarrow8^{10}-8^9-8^8⋮11\)
Vậy....
\(8^{10}-8^9-8^8\)
\(=8^8.\left(8^2-8-1\right)\)
\(=8^8.\left(64-8-1\right)\)
\(=8^8.55\)
Mà \(55⋮11\)
\(\Leftrightarrow8^8.55⋮11\)
\(\Leftrightarrow8^{10}-8^9-8^8⋮11\left(đpcm\right)\)
ta có : \(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8\left(64-8-1\right)\)
\(=8^8\left(55\right)=8^8.5.11⋮11\) \(\Rightarrow8^8.5.11\) chia hết cho \(11\)
\(\Leftrightarrow8^{10}-8^9-8^8\) chia hết cho \(11\)
vậy \(8^{10}-8^9-8^8\) chia hết cho \(11\) (đpcm)
Giải:
\(8^{10}-8^9-8^8\)
\(=8^8\left(8^2-8-1\right)\)
\(=8^8\left(64-8-1\right)\)
\(=8^8.55\)
Vì \(55⋮11\)
Nên \(8^8.55⋮11\)
Hay \(8^{10}-8^9-8^8⋮11\) (đpcm)
Chúc bạn học tốt!
\(8^{10}-8^9-8^8=8^8.\left(8^2-8-1\right)=8^8.55⋮11\)
\(\Rightarrow8^{10}-8^9-8^8⋮11\left(đpcm\right)\)
Vậy .....
Chúc bạn học tốt!