Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Thị Ngọc Anh

Chứng minh : 7/12 < 1/ 1×2 + 1/ 3×4 + 1/ 5×6 + ........ + 1/ 99 ×100 < 5/6

%$H*&
7 tháng 5 2019 lúc 20:07

Ta có: 

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

Ta có:\(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75};\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)

Tự giải tiếp hay nhờ thầy cô giảng tiếp đi nha bn, mỏi tay nên ko thể làm đc nữa !!


Các câu hỏi tương tự
nguyễn tống duy long
Xem chi tiết
bye
Xem chi tiết
Nguyễn Phương Trinh
Xem chi tiết
Nguyen Thuy Tien
Xem chi tiết
Lưu Khánh Chi
Xem chi tiết
Trái tim băng giá
Xem chi tiết
Trịnh Phương Hà
Xem chi tiết
Nguyễn Đăng Hiếu
Xem chi tiết
Trang Nguyễn
Xem chi tiết