cho a , b thuộc N .Chứng minh 3a + b chia hết cho 7 chỉ khi 5a^2 + 15ab - b^2 chia hết cho 49
Cho các số nguyên a, b. Chứng minh rằng \(5a^2+15ab-b^2\) chia hết cho 49 khi và chỉ khi \(3a+b\) chia hết cho 7
chứng minh
a) nếu 2a+b chia hết cho 13 va 5a-4b chia hết cho13 thì a - 6b chia hết cho 13
b)nếu 100a + b thì a+4b chia hết cho 7
c)nếu 3a+4b chia hết cho 11 thì a+5b cũng chia hết cho 11
a) Tìm số nguyên a,b thỏa mãn \(a=\frac{b^2+b+1}{b+1}\)
b) Đặt B= a3 + 3a2 + 5a + 3 . Chứng minh rằng B chia hết cho 3 với mọi giá trị nguyên dương của a
c) Nếu a chia 13 dư 2 và b chia 13 dư 3 thì a2+b2 chia hết cho 13
a) Tìm số nguyên a,b thỏa mãn \(a=\frac{b^2+b+1}{b+1}\)
b) Đặt B= a3 + 3a2 + 5a + 3 . Chứng minh rằng B chia hết cho 3 với mọi giá trị nguyên dương của a
c) Nếu a chia 13 dư 2 và b chia 13 dư 3 thì a2+b2 chia hết cho 13
với a,b là các số nguyên, chứng minh rằng nếu 6a^2+5ab-16b^2 chia hết cho 7 thì a^4-b^4 chia hết cho 7
chứng minh rằng với mọi số nguyên a
a^4 + 6a^3 + 11a^2 + 6a chia hết cho 24
a^5 - 5a^3 + 4a chia hết cho 120
3a^4 -14a^3 + 21a^2 -10a chia hết cho 24
Chứng Minh với mọi số nguyên a
Câu 1: (a^4 +6a^3 + 11a^2 +6a) chia hết cho 24
Câu 2: (a^5 - 5a^3 + 4a) chia hết cho 120
Câu 3: (3a^4 -14a^3 +21a^2 - 10a) chia hết cho 24
Chứng minh:
a) n4 +7. (7 + 2n2 ) chia hêt 64 V n là số nguyên lẻ
b) Cho a,b thuộc Z. Chứng minh 2a+b chia hết 7 (=) 32 + 10ab - 8b2 chia hết cho 49