4\(^{n+2}\)-3\(^{n+2}\)-4n-3n = 16.4n-9.3n-4n-3n = 15.4^n - 10.3^n ( chia hết cho 30 với n >=1)
Ta có :
\(4^{n+2}-3^{n+2}-4^n-3^n\)
\(=4^n\cdot4^2-3^n\cdot3^2-4^n-3^n\)
\(=4^n\cdot4^2-4^n-3^n\cdot3^2-3^n\)
\(=4^n\cdot\left(4^2-1\right)-3^n\cdot\left(3^2+1\right)\)
\(=4^n\cdot\left(16-1\right)-3^n\cdot\left(9+1\right)\)
\(=4^n\cdot15-3^n\cdot10\)
Vì :
\(15⋮3\Rightarrow\left(4^n\cdot15\right)⋮3\)(1)
\(10⋮10\Rightarrow\left(3^n\cdot10\right)⋮10\)(2)
Từ (1) và (2) \(\Rightarrow\left(4^n\cdot15-3^n\cdot10\right)⋮\left(3\cdot10\right)\)
\(\Rightarrow\left(4^{n+2}-3^{n+2}-4^n-3^n\right)⋮30\)