cho các số nguyên dương a,b,c,d thỏa mãn 1/a2+1/b2+1/c2+1/d2=1.chứng minh rằng trong 4 số đã cho luôn tồn tại ít nhất hai số bằng nhau
cho các số nguyên dương a, b , c, d thỏa mãn 1 phầ a bình + 1 phần b bình + 1 phần c bình + 1 phần dbinhf =1 . Chứng minh rằng trong 4 số đó luôn tồn tại 2 số bằng nhau
Chứng minh rằng không tồn tại các số nguyên a,b,c,d thỏa mãn abcd=(2d+1)^2 và a^2=b^2+c^2+d^2.
Giúp em với cả nhà ơi. Thanks ạ.
Các bn giúp mk bài này nha
1, Chứng minh rằng với mọi số nguyên tố p>2 thì không tồn tại các số nguyên dương m,n thỏa mãn :\(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\)
2, Cho 3 số thực khác 0 đôi một khác nhau và thỏa mãn : \(a^2\left(b+c\right)=b^2\left(a+c\right)\)=2014
tính giá trị biểu thức H=\(c^2\left(a+b\right)\)
cho các số nguyên dương a,b,c,d thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
chứng minh rằng truong 4 số đã cho luôn tồn tại ít nhất hai số bằng nha
cho a, b, c, d là 4 số nguyên dương thỏa mãn: b=a+c/2 và 1/c=1/2.(1/b+1/d) Chứng minh rằng a/b=c/d
cho 4 số a,b,c,d khác 0 thỏa mãn b^2=ac và c^2=bd. Chứng minh rằng a/d=(a+b+c/b+c+d)^3
Câu 1: Tìm số nguyên x, y sao cho x - 2xy + y = 0
Câu 2: a) Chứng minh rằng nếu a + c = 2b và 2bd = c (b+d) thì a/b = c/d (b, d khác 0)
b) Cần bao nhiêu số hạng của tổng S = 1 + 2 + 3 + ... để được một số có ba chữ số giống nhau.
Câu 3: Cho tam giác ABC có góc B = 45 độ, góc C = 120 độ. Trên tia đối của tia CB lấy D sao cho CD = 2CB. Tính góc ADB.
Câu 4: Tìm mọi số nguyên tố thỏa mãn x^2 - 2y^2 = 1
1) Cho 3 số a,b,c khác 0 thỏa mãn điều kiện: \(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)
Tính giá trị của biểu thức P = \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
2) Cho biết (x-1).f(x) = (x+4).f(x+8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm.
3) Tìm các cặp số nguyên (x,y) thỏa mãn: \(x-3y+2xy=4\)
4) Chứng minh rằng không tồn tại số tự nhiên n để n2 + 2018 là số chính phương.
5) Cho 2016 số nguyên dương a1, a2, a3, ............., a2016 thỏa mãn:
\(\frac{1}{^a1}+\frac{1}{^a2}+\frac{1}{^a3}+...+\frac{1}{^a2016}=300\)
Chứng minh rằng tồn tại ít nhất 2 số trong 2016 số đã cho bằng nhau.
Cho các số nguyên duong a, b, c, d thỏa mãn: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\). Chứng minh: trong 4 số đã cho luôn có ít nhất 2 số bằng nhau