Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lộc Vũ

chứng minh 3^2n+3 +2^4n+1 chia hết cho 25

Tuanhonghai2006 Hoang
28 tháng 1 2018 lúc 20:20

A=3^(2n+3)+2(4n+1)chia hết cho 25 có thể dùng pp như phần a để giải phần này tôi dùng 1 phương pháp khác cho phong phú và pp nay co thể ap dụng cho phần a) Pp lựa chọn phần dư: A=3^(2n+3)+2^(4n+1) gọi 3^(2n+3)=B,2^(4n+1)=C n=1 B=3^(2+3)=3^5=243 chia 25 dư 18 C=2^5=32 chia 25 dư 7 B+C chia 25 dư bằng 18+7chia 25 dư 0 giả sử n=k là số đầu tiên thỏa mãn A=3^(2n+3)+2^(4n+1) chia hết cho 25 ta chứng minh với n=k+2 số A cũng chia hết cho 25 Gọi A(k),B(k), C(k) là giá trị A, B, C ứng với n=k khi n=k gọi b là phần dư của B(k) cho 25, c là phần dư của C(k) cho 25 n=k số A =B(k)+C(k) chia hết cho 25 nên b+c chia hết cho 25 với k+2 thì B(k+2)=B(k)*9=81B(k), C(k+2)=C(k)*2*8=256C(k) A(k+2)=81(B(k)+256C(k)=75B(k)+6B(k)+250... A(k+2)=75C(k)+250C(k)+6(B(k)+C(k)) hai số hạng đầu chứa các nhân tử chia hết cho 25 nên chúng chia hết cho 25 còn B(k)+C(k) chia hết cho 25 từ đó A(k+2) chia hết cho 25 ta CM đc n=1 A chia hết cho 25 và nếu với k số A chia hết cho 25 thi với k+2 số A cũng chia hết cho 25 vậy với mọi số lẻ n thì A chia hết cho 25


Các câu hỏi tương tự
Lộc Vũ
Xem chi tiết
Pham Quang Phong
Xem chi tiết
Nguyễn Lan Chi
Xem chi tiết
chudung133
Xem chi tiết
Nguyễn Lan Chi
Xem chi tiết
Ngô Song Linh
Xem chi tiết
Nguyễn Trần Lam Trúc
Xem chi tiết
Trần Linh Trang
Xem chi tiết
TIK TOK ẢNH CHẾ ANIME
Xem chi tiết