Ta có: \(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+....+\frac{2}{97\times99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Mà \(32\%=\frac{32}{100}\)
Vì 99 < 100 (cùng tử) \(\Rightarrow\frac{32}{99}>\frac{32}{100}\)
Vậy \(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{1}{7\times9}+...+\frac{2}{97\times99}>32\%\) (ĐPCM)
Ta có: \(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{97\times99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
\(\Rightarrow32\%=\frac{32}{100}\)
* Dựa vào cách so sánh phân số của lớp 4 (Phân số có tử bằng nhau ta đi so sánh mẫu số, phân số nào có mẫu số bé hơn thì phân số đó lớn hơn - phân số nào có mẫu số lớn hơn thì phân số đó bé hơn)
\(\Rightarrow\frac{32}{99}>\frac{32}{100}\)
Vậy \(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{97\times99}>32\%\left(đpcm\right)\)
dpcm là điều phải chứng minh