Áp dụng DTSBN
P=\(\frac{x+y+z+t}{y+z+t+t+x+z+x+y+z}\)
P=\(\frac{1}{2}\)
Bài này nếu tìm x,y,z thì chỉ có thể suy ra x=y=z=t
Áp dụng DTSBN
P=\(\frac{x+y+z+t}{y+z+t+t+x+z+x+y+z}\)
P=\(\frac{1}{2}\)
Bài này nếu tìm x,y,z thì chỉ có thể suy ra x=y=z=t
Biết:\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+t+y}=\frac{t}{x+y+z}\)
Tìm giá tị của \(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Cho biểu thức: \(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\)
Tìm giá trị của P biết rằng \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Biết \(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}\)
Tìm P = \(\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{y+x}+\frac{t+x}{z+y}\)
cho dãy tỉ số bằng nhau :$\frac{x}{y+z+t}$=$\frac{y}{z+t+x}$=$\frac{z}{t+x+y}$=$\frac{t}{x+y+z}$ cmr : "$\frac{x+y}{z+t}$=$\frac{y+z}{t+x}$=$\frac{z+t}{x+y}$=$\frac{t+z}{y+z}$"
cho x,y,z,t thuoc R* sao cho:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính P=\(\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{y+z}\)
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính : P = \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\)
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính :\(Q=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Cho biết: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính: \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
P= [TEX]\frac{x+y}{x+t} [/TEX] + [TEX]\frac{y+z}{t+x} [/TEX] + [TEX]\frac{z+t}{x+y} [/TEX] + [TEX]\frac{t+x}{z+y} [/TEX]
Tìm giá trị P biết : [TEX]\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}= \frac{t}{x+y+z}[/TEX]