cho bieu thuc M=\(\frac{xy-3x-y+4}{xy-2x-2y+4}\)+\(\frac{yz-3y-z+4}{yz-2y-2z+4}\)+\(\frac{zx-3z-x+4}{zx-2z-2x+4}\)
chung minh GT cua bieu thuc M luon la 1 so nguyen voi x khac 2 va y khac 2
Cho \(\frac{x^2-yz}{yz}+\frac{y^2-zx}{zx}+\frac{z^2-xy}{xy}=0\)
Tính giá trị của M=\(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
Chứng minh rằng:
a, nếu x+y=1 thì \(\frac{x}{y^3-1}+\frac{y}{x^3-1}+\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
b, nếu x,y,z khác -1 thì\(\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+z+y+1}+\frac{zx+2z+1}{zx+z+x+1}=3\)
c, Cho x,y,z đôi một khác nhau thỏa mãn\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\) thì\(\frac{x}{\left(y-z\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)
Tính : S$=\left(yz+zx+xy\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)$
Giúp e với
Cho \(\frac{1}{yz-x^2}+\frac{1}{zx-y^2}+\frac{1}{xy-z^2}=0\)CMR: \(\frac{x}{\left(yz-x^2\right)^2}+\frac{y}{\left(zx-y^2\right)^2}+\frac{z}{\left(xy-z^2\right)^2}=0\)
Làm nhanh dùm vs. Giải chi tiết ra nha, ko ghi chtt
TÍNH: \(S=\left(yz+zx+xy\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
Cộng các phân thức đại số sau vào với nhau:
\(\frac{1}{\left(y-z\right)\left(x^2+xz-y^2-yz\right)}+\frac{1}{\left(z-x\right)\left(y^2+xy-z^2-zx\right)}+\frac{1}{\left(x-y\right)\left(z^2+yz-x^2-xy\right)}\)
Cho abcd = 1. Tính
\(S=\left(yz+zx+xy\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
Cho các số dương x,y,z thỏa mãn: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất biểu thức \(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)