Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a. Chứng AO vuông góc với BC
b. Chứng minh BC là phân giác góc ABH
c. Gọi I là giao điểm của AD và BH. Chứng minh IH=IB
Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn ( O,R) tại B và tại C cắt nhau tại A. Kẻ đường tròn CD, kẻ BH vuông góc với CD tại H. A. Chứng minh bốn điểm A,B,O,C cùng thuộc 1 đường tròn. B. chứng minh AO vuông góc với BC. Cho biết R=15cm, BC=24cm. Tính AB,OA. C. Gọi I là giao điểm của AD và BH,E là giao điểm của BC và AC. Chứng minh IH=IB
Cho đường tròn tâm O bán kính R, dây BC khác đường kính.Hai tiếp tuyến của đường tron (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh: AO vuông góc với BC
b) Cho biết R = 15 cm, BC = 24 cm. Tính AB, OA
c) Chứng minh: BC là tia phân giác của ^ABH.
d) Gọi I là giao điểm của AD và BH. Chứng minh IH =IB
Cho đường tròn tâm O bán kính R, dây BC khác đường kính.Hai tiếp tuyến của đường tron (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh: AO vuông góc với BC
b) Cho biết R = 15 cm, BC = 24 cm. Tính AB, OA
c) Chứng minh: BC là tia phân giác của \(\widehat{ABH}\).
d) Gọi I là giao điểm của AD và BH. Chứng minh IH = IB.
Cho tam giác ABC vuông tại A, đường tròn tâm O đường kính AB cắt BC tại H.
a) Chứng minh: AH vuông góc với BC và AB2 = BC. BH
b)Vẽ dây AD của đường tròn (O) vuông góc với OC. Chứng minh: CD là tiếp tuyến của đường tròn (O).
c) Kẻ DK vuông góc với AB tại K. DK cắt BC tại I. Chứng minh: I là trung điểm của DK.
giải giúm mình plssss
Cho tam giác ABC vuông tại A, đường tròn tâm O đường kính AB cắt BC tại H.
a) Chứng minh: AH vuông góc với BC và AB2 = BC. BH
b)Vẽ dây AD của đường tròn (O) vuông góc với OC. Chứng minh: CD là tiếp tuyến của đường tròn (O).
c) Kẻ DK vuông góc với AB tại K. DK cắt BC tại I. Chứng minh: I là trung điểm của DK.
Bài 5. ( 3,0 điểm ) Cho đường tròn ( O ; R ) đường kính AB và dây CD vuông góc với nhau tại M ( CA < CB ) . Hai tia BC và DA cắt nhau tại E. Từ E kẻ EH vuông góc với AB tại H. a ) Chứng minh : HEC=CAB. b ) Chứng minh : HC là tiếp tuyến của đường tròn ( O ; R ) . c ) Tiếp tuyến tại A của đường tròn ( O ) cắt HC tại N. Chứng minh đường thẳng NB đi qua trung điểm của đoạn thẳng CM .
cho đường tròn tâm O dây AB khác đường kính. Hai tiếp tuyến với đường tròn O tại B và tại C cắt nhau ở A.
a, Chứng minh OA là đường trung trực của BC
b, Kẻ đường kính CD kẻ BH vuông góc với CD tại H. Chứng minh BC là tia phân giác của góc ABH
c, Gọi I là giao điểm của AD và BH. Chứng minh I là trung điểm của BH
Cho đường tròn ( O ; R ) , dây BC khác đường kính . Qua O kẻ đường vuông góc với BC tại I , cắt tiếp tuyến tại B của đường tròn tại điểm A . Vẽ đường kính BD , đường thẳng vuông góc với BD tại O cắt BC tại K . CMR :
a, CD // OA
b, AC là tiếp tuyến của ( O )
c, IK . IC + IO.IA = R^2