Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
\(\frac{3x-y+5z}{x+y+3z}=\frac{3.2k-3k+5.5k}{2k+3k+3.5k}=\frac{6k-3k+25k}{2k+3k+15k}=\frac{28k}{21k}=\frac{4}{3}\)
Kb với minh nha!
Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
\(\frac{3x-y+5z}{x+y+3z}=\frac{3.2k-3k+5.5k}{2k+3k+3.5k}=\frac{6k-3k+25k}{2k+3k+15k}=\frac{28k}{21k}=\frac{4}{3}\)
Kb với minh nha!
a) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức: \(B=\left(1+\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\cdot\left(1+\frac{z}{x}\right)\)
b) Tìm x, y, z biết:
\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
Tìm x,y,z biết: \(\frac{2}{3}\) \(\cdot x=\frac{3}{4}\)\(\cdot y=\frac{5}{6}\)\(\cdot z\)và \(x^2+y^2+z^2=724\)
Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)
Bài 2: Tìm x, y, z thão mãn:
a. \(2x=3y=7z\) và \(x+y+z-13=0\)
b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)
c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)
d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)
e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và \(x\cdot y=15\)
f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)
g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)
k. \(7x=3y:5y=7z\) và \(x\cdot y+x\cdot z-y\cdot z=4\)
Bìa 3: Tính
\(Cho
\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính
\(a. A=\frac{5x+3y}{5y-4z}\)
\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)
\(c. C=\frac{2y-3z}{x+y+z}\)
Bài 4:
\(Cho
\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c
a)Cho x,y,z khác 0 và x-y-z=0.Tính giá trị biểu thức:
\(B=\left(1-\frac{z}{x}\right)\cdot\left(1-\frac{x}{y}\right)\cdot\left(1-\frac{y}{z}\right)\)
b)Cho\(\frac{3\cdot x-29}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
CM:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
c)Cho biểu thức M=\(\frac{5-x}{x-2}\).Tìm x nguyên để M có giá trị nhỏ nhất
Cho 3 số x,y,z là 3 số khác 0 thỏa mãn điều kiện:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị biểu thức:
B=\(\left(1+\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\cdot\left(1+\frac{z}{x}\right)\)
tìm x,y,z
\(\frac{6}{11}\cdot x=\frac{9}{2}\cdot y=\frac{18}{5}\cdot z\)và \(-x+y+z=-120\)
Tìm x,y,z \(\inℚ\)thỏa mãn \(\left(x-\frac{1}{3}\right)\cdot\left(y-\frac{1}{2}\right)\cdot\left(z-5\right)=0\)và x+2=y+1=z+3
Cho x,y,x là các số thỏa mãn xyz=2016
CMR: \(\frac{2016\cdot x}{x\cdot y+2016\cdot x+2016}+\frac{y}{y\cdot z+y+2016}+\frac{z}{x\cdot z+z+1}=1\)
Thu gọn đơn thức và chỉ rõ phần hệ số, phần biến của đơn thức\(\left(-5\cdot x^2\cdot y\cdot z\right)\frac{4}{5}x\cdot y^2\cdot z^3\)