Cho a, b, c, d là các dố dương. Chứng minh rằng: \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).
1. cho a,b,c là 3 số dương thỏa mãn abc=1 . CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
2. tìm GTLN của biểu thức: \(N=\frac{a}{bcd+1}+\frac{b}{cda+1}+\frac{c}{dab+1}+\frac{d}{abc+1}\)
Bài tập 3* . Chứng minh rằng :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2\left(\sqrt{x}+\sqrt{y}\right)\) với x, y > 0
Bài tập 5* . Chứng minh rằng :
\(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)với \(0\le a,b,c\le1\)
Bài tập 9* . Chứng minh rằng :
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{a^3+c^3+abc}\le\frac{1}{abc}\)với a, b, c > 0
Cho \(a^3+b^3+c^3=3abc\) và abc khác 0; a+b+c khác 0
Chứng minh rằng
P=\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
a, cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
chứng minh rằng \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
b, tìm A biết rằng \(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
c, chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a,b,c;,d\ne0;a\ne b;c\ne d\right)\)
suy ra được
a,\(\frac{a}{a-b}=\frac{c}{c-d}\)
b, \(\frac{a+b}{b}=\frac{c+d}{d}\)
Bài 2:cho a ,b ,c là 3 số dương thỏa mãn abc=1 .Chứng minh rằng
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Cho a;b;c>0.chứng minh rằng \(\frac{a^3+b^3+c^3}{abc}+\frac{54abc}{\left(a+b+c\right)^3}\ge5\)
Cho a, b, c là ba số dương thỏa mãn abc=1. Chứng minh rằng:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)