Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Blue Frost

Cho:\(a\ge b\ge c\ge0.CMR:a^3b^2+b^3c^2+c^3a^2\ge a^2b^3+b^2c^3+c^2a^3\)

Nguyễn Hưng Phát
16 tháng 7 2018 lúc 13:58

Bất đẳng thức cần chứng minh tương đương với:

\(a^3b^2-a^2b^3+b^3c^2-c^3b^2+c^3a^2-c^2a^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-b+b-a\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)+c^2a^2\left(b-a\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(a^2b^2-c^2a^2\right)\left(a-b\right)+\left(b^2c^2-c^2a^2\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow a^2\left(b^2-c^2\right)\left(a-b\right)+c^2\left(b^2-a^2\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left[a^2\left(b+c\right)-c^2\left(a+b\right)\right]\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left(a^2b+a^2c-c^2a-c^2b\right)\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left[a\left(ab-c^2\right)+c\left(a^2-bc\right)\right]\left(a-b\right)\left(b-c\right)\ge0\) luôn đúng do \(a\ge b\ge c\ge0\)

Blue Frost
16 tháng 7 2018 lúc 14:13

cảm ơn bạn nhá, bạn trả lời giúp mình mấy câu hỏi về BĐT còn lại của mik đc ko? cảm ơn bn nhiều!


Các câu hỏi tương tự
Trung Hoàng
Xem chi tiết
Fire Sky
Xem chi tiết
Diệp Nguyễn Thị Huyền
Xem chi tiết
nguyễn thị Quỳnh Mai
Xem chi tiết
N.T.M.D
Xem chi tiết
nguyen thu phuong
Xem chi tiết
kikazaru
Xem chi tiết
Aura Phạm
Xem chi tiết
Loan Trinh
Xem chi tiết