=> A = \(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\)
Nhân 2 vế vào A , ta được :
=> 2A = \(1+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\) ( 1 )
Trừ ( 1 ) cho A , ta được :
2A - A = \(1+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-\frac{1}{2^5}\)
=> A = \(1-\frac{1}{2^5}=1-\frac{1}{32}=\frac{31}{32}\)
Kiểm tra : 2003 : 2004 \(\approx\) 0,999
31 : 32 \(\approx\)0,968
Vì 0,999 > 0,968 => \(\frac{2003}{2004}>\frac{31}{32}\)
A=1/2+1/4+1/8+1/16+1/32
A=16/32+8/32+4/32+2/34+1/34
A=31/34
B>A